ru
Шолле Ф.

Глубокое обучение на Python

Avisarme cuando se agregue el libro
Para leer este libro carga un archivo EPUB o FB2 en Bookmate. ¿Cómo puedo cargar un libro?
Глубокое обучение — Deep learning — это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований. Согласитесь, эта фраза звучит угрожающе. Но всё не так страшно, если о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями. Познакомьтесь с глубоким обучением на практических примерах из самых разнообразных областей. Книга делится на две части, в первой даны теоретические основы, вторая посвящена решению конкретных задач. Это позволит вам не только разобраться в основах DL, но и научиться использовать новые возможности на практике. «Обучение — это путешествие длинной в жизнь, особенно в области искусственного интеллекта, где неизвестностей гораздо больше, чем определенности.» Франсуа Шолле
Este libro no está disponible por el momento.
743 páginas impresas
¿Ya lo leíste? ¿Qué te pareció?
👍👎

Opiniones

  • Андрейcompartió su opiniónhace 5 años
    👍Me gustó
    💡He aprendido mucho
    🎯Justo en el blanco

Citas

  • Kirill Kruglikovcompartió una citahace 4 años
    Этот вопрос открыл двери в новую парадигму программирования. В классическом программировании, в парадигме символического ИИ, люди вводят правила (программу) и данные для обработки в соответствии с этими правилами и получают ответы (рис. 1.2). В машинном обучении люди вводят данные и ответы, соответствующие этим данным, а на выходе получают правила. Эти правила затем можно применить к новым данным для получения оригинальных ответов.
  • Андрейcompartió una citahace 6 años
    Вообще говоря, чем меньше обучающих данных, тем скорее наступит переобучение, а использование маленькой сети — один из способов борьбы с ним.
  • Андрейcompartió una citahace 6 años
    С целочисленными метками следует использовать функцию sparse_categorical_crossentropy:
    model.compile(optimizer='rmsprop',
    loss='sparse_categorical_crossentropy',
    metrics=['acc'])

En las estanterías

fb2epub
Arrastra y suelta tus archivos (no más de 5 por vez)