bookmate game
ru
Николас Локашо,Нихиль Будума

Основы глубокого обучения

Avisarme cuando se agregue el libro
Para leer este libro carga un archivo EPUB o FB2 en Bookmate. ¿Cómo puedo cargar un libro?
Глубокое обучение — раздел машинного обучения, изучающий глубокие нейронные сети и строящий процесс получения знаний на основе примеров. Авторы рассказывают об основных принципах решения задач в глубоком обучении и способах внедрения его алгоритмов.
Este libro no está disponible por el momento.
544 páginas impresas
¿Ya lo leíste? ¿Qué te pareció?
👍👎

Citas

  • Eldar Nasyrovcompartió una citahace 5 años
    На каждом шаге движения перпендикулярно контуру нам нужно решать, как далеко мы хотим зайти, прежде чем заново вычислять направление. Это расстояние зависит от крутизны поверхности. Почему? Чем ближе мы к минимуму, тем короче должны быть шаги. Мы понимаем, что близки к минимуму, поскольку поверхность намного более плоская и крутизну мы используем как индикатор степени близости к этому минимуму. Но если поверхность ошибки рыхлая, процесс может занять много времени. Поэтому часто стоит умножить градиент на масштабирующий коэффициент — темп обучения. Его выбор — сложная задача (рис. 2.4).
  • Eldar Nasyrovcompartió una citahace 5 años
    Эту поверхность удобно визуализировать как набор эллиптических контуров, где минимальная ошибка расположена в центре эллипсов. Тогда мы будем работать с двумерным пространством, где измерения соответствуют весам. Контуры сопоставлены значениям w1 и w2, которые дают одно и то же E. Чем ближе они друг к другу, тем круче уклон. Направление самого крутого уклона всегда перпендикулярно контурам. Его можно выразить в виде вектора, называемого градиентом.
  • Eldar Nasyrovcompartió una citahace 5 años
    Пора разработать высокоуровневую стратегию нахождения значений весов, которые сведут к минимуму функцию потерь. Допустим, мы случайным образом инициализируем веса сети, оказавшись где-то на горизонтальной поверхности. Оценив градиент в текущей позиции, мы можем найти направление самого крутого спуска и сделать шаг в нем. Теперь мы на новой позиции, которая ближе к минимуму, чем предыдущая. Мы проводим переоценку направления самого крутого спуска, взяв градиент, и делаем шаг в новом направлении. Как показано на рис. 2.3, следование этой стратегии со временем приведет нас к точке минимальной ошибки. Этот алгоритм известен как градиентный спуск, и мы будем использовать его для решения проблемы обучения отдельных нейронов и целых сетей

En las estanterías

fb2epub
Arrastra y suelta tus archivos (no más de 5 por vez)