en
Keith McCormick,Jesus Salcedo

IBM SPSS Modeler Essentials

Avisarme cuando se agregue el libro
Para leer este libro carga un archivo EPUB o FB2 en Bookmate. ¿Cómo puedo cargar un libro?
Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler
About This BookGet up–and-running with IBM SPSS Modeler without going into too much depth.Identify interesting relationships within your data and build effective data mining and predictive analytics solutionsA quick, easy–to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the businessWho This Book Is ForThis book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book.
What You Will LearnUnderstand the basics of data mining and familiarize yourself with Modeler's visual programming interfaceImport data into Modeler and learn how to properly declare metadataObtain summary statistics and audit the quality of your dataPrepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fieldsAssess simple relationships using various statistical and graphing techniquesGet an overview of the different types of models available in ModelerBuild a decision tree model and assess its resultsScore new data and export predictionsIn DetailIBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey.
This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler's easy to learn “visual programming” style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices.
This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model's performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models.
Style and approachThis book empowers users to build practical & accurate predictive models quickly and intuitively. With the support of the advanced analytics users can discover hidden patterns and trends.This will help users to understand the factors that influence them, enabling you to take advantage of business opportunities and mitigate risks.
Este libro no está disponible por el momento.
305 páginas impresas
Publicación original
2017
Año de publicación
2017
¿Ya lo leíste? ¿Qué te pareció?
👍👎
fb2epub
Arrastra y suelta tus archivos (no más de 5 por vez)