en
David Katz,Philipp Kats

Learn Python by Building Data Science Applications

Avisarme cuando se agregue el libro
Para leer este libro carga un archivo EPUB o FB2 en Bookmate. ¿Cómo puedo cargar un libro?
Understand the constructs of the Python programming language and use them to build data science projects
Key FeaturesLearn the basics of developing applications with Python and deploy your first data applicationTake your first steps in Python programming by understanding and using data structures, variables, and loopsDelve into Jupyter, NumPy, Pandas, SciPy, and sklearn to explore the data science ecosystem in PythonBook DescriptionPython is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production.
This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice.
By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards.
What you will learnCode in Python using Jupyter and VS CodeExplore the basics of coding — loops, variables, functions, and classesDeploy continuous integration with Git, Bash, and DVCGet to grips with Pandas, NumPy, and scikit-learnPerform data visualization with Matplotlib, Altair, and DatashaderCreate a package out of your code using poetry and test it with PyTestMake your machine learning model accessible to anyone with the web APIWho this book is forIf you want to learn Python or data science in a fun and engaging way, this book is for you. You’ll also find this book useful if you’re a high school student, researcher, analyst, or anyone with little or no coding experience with an interest in the subject and courage to learn, fail, and learn from failing. A basic understanding of how computers work will be useful.
Philipp Kats is a researcher at the Urban Complexity Lab, NYU CUSP, a research fellow at Kazan Federal University, and a data scientist at StreetEasy, with many years of experience in software development. His interests include data analysis, urban studies, data journalism, and visualization. Having a bachelor's degree in architectural design and a having followed the rocky path (at first) of being a self-taught developer, Philipp knows the pain points of learning programming and is eager to share his experience. David Katz is a researcher and holds a Ph.D. in mathematics. As a mathematician at heart, he sees code as a tool to express his questions. David believes that code literacy is essential as it applies to most disciplines and professions. David is passionate about sharing his knowledge and has 6 years of experience teaching college and high school students.
Este libro no está disponible por el momento.
512 páginas impresas
Publicación original
2019
Año de publicación
2019
¿Ya lo leíste? ¿Qué te pareció?
👍👎
fb2epub
Arrastra y suelta tus archivos (no más de 5 por vez)