en
Abhishek Kumar,Mounir Abdelaziz

Machine Learning for Imbalanced Data

Avisarme cuando se agregue el libro
Para leer este libro carga un archivo EPUB o FB2 en Bookmate. ¿Cómo puedo cargar un libro?
As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance.
Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.
As you progress, you’ll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that’ll demonstrate the practical implementation of each technique.
By the end of this book, you’ll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.
Este libro no está disponible por el momento.
686 páginas impresas
Publicación original
2023
Año de publicación
2023
¿Ya lo leíste? ¿Qué te pareció?
👍👎
fb2epub
Arrastra y suelta tus archivos (no más de 5 por vez)