Usamos cookies para mejorar la experiencia en el sitio web de Bookmate y nuestras recomendaciones.
Para obtener más información, consulta nuestra Política de cookies.
Aceptar todas las cookies
Configuración de cookies
Svg Vector Icons : http://www.onlinewebfonts.com/icon Algo salió mal. Vuelve a intentarlo.
Python Data Science Cookbook, Gopi Subramanian
en
Libros
Gopi Subramanian

Python Data Science Cookbook

Over 60 practical recipes to help you explore Python and its robust data science capabilities
About This BookThe book is packed with simple and concise Python code examples to effectively demonstrate advanced concepts in actionExplore concepts such as programming, data mining, data analysis, data visualization, and machine learning using PythonGet up to speed on machine learning algorithms with the help of easy-to-follow, insightful recipesWho This Book Is ForThis book is intended for all levels of Data Science professionals, both students and practitioners, starting from novice to experts. Novices can spend their time in the first five chapters getting themselves acquainted with Data Science. Experts can refer to the chapters starting from 6 to understand how advanced techniques are implemented using Python. People from non-Python backgrounds can also effectively use this book, but it would be helpful if you have some prior basic programming experience.
What You Will LearnExplore the complete range of Data Science algorithmsGet to know the tricks used by industry engineers to create the most accurate data science modelsManage and use Python libraries such as numpy, scipy, scikit learn, and matplotlib effectivelyCreate meaningful features to solve real-world problemsTake a look at Advanced Regression methods for model building and variable selectionGet a thorough understanding of the underlying concepts and implementation of Ensemble methodsSolve real-world problems using a variety of different datasets from numerical and text data modalitiesGet accustomed to modern state-of-the art algorithms such as Gradient Boosting, Random Forest, Rotation Forest, and so onIn DetailPython is increasingly becoming the language for data science. It is overtaking R in terms of adoption, it is widely known by many developers, and has a strong set of libraries such as Numpy, Pandas, scikit-learn, Matplotlib, Ipython and Scipy, to support its usage in this field. Data Science is the emerging new hot tech field, which is an amalgamation of different disciplines including statistics, machine learning, and computer science. It's a disruptive technology changing the face of today's business and altering the economy of various verticals including retail, manufacturing, online ventures, and hospitality, to name a few, in a big way.
This book will walk you through the various steps, starting from simple to the most complex algorithms available in the Data Science arsenal, to effectively mine data and derive intelligence from it. At every step, we provide simple and efficient Python recipes that will not only show you how to implement these algorithms, but also clarify the underlying concept thoroughly.
The book begins by introducing you to using Python for Data Science, followed by working with Python environments. You will then learn how to analyse your data with Python. The book then teaches you the concepts of data mining followed by an extensive coverage of machine learning methods. It introduces you to a number of Python libraries available to help implement machine learning and data mining routines effectively. It also covers the principles of shrinkage, ensemble methods, random forest, rotation forest, and extreme trees, which are a must-have for any successful Data Science Professional.
Style and approachThis is a step-by-step recipe-based approach to Data Science algorithms, introducing the math philosophy behind these algorithms.
más
629 páginas impresas
Año de publicación
2015
¿Ya lo leíste? ¿Qué te pareció?
👍👎

En las estanterías

fb2epub
Arrastra y suelta tus archivos (no más de 5 por vez)